On Metal Segregation of Bimetallic Nanocatalysts Prepared by a One-Pot Method in Microemulsions

نویسندگان

  • Concha Tojo
  • David Buceta
  • Manuel Arturo López-Quintela
چکیده

A comparative study on different bimetallic nanocatalysts prepared from microemulsions using a one-pot method has been carried out. The analysis of experimental observations, complemented by simulation studies, provides detailed insight into the factors affecting nanoparticle architecture: (1) The metal segregation in a bimetallic nanocatalysts is the result of the combination of three main kinetic parameters: the reduction rate of metal precursors (related to reduction standard potentials), the material intermicellar exchange rate (determined by microemulsion composition), and the metal precursors concentration; (2) A minimum difference between the reduction standard potentials of the two metals of 0.20 V is needed to obtain a core-shell structure. For values ∆ε0 smaller than 0.20 V the obtaining of alloys cannot be avoided, neither by changing the microemulsion nor by increasing metal concentration; (3) As a rule, the higher the film flexibility around the micelles, the higher the degree of mixture in the nanocatalyst; (4) A minimum concentration of metal precursors is required to get a core-shell structure. This minimum concentration depends on the microemulsion flexibility and on the difference in reduction rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding the Metal Distribution in Core-Shell Nanoparticles Prepared in Micellar Media

The factors that govern the reaction rate of Au/Pt bimetallic nanoparticles prepared in microemulsions by a one-pot method are examined in the light of a simulation model. Kinetic analysis proves that the intermicellar exchange has a strong effect on the reaction rates of the metal precursors. Relating to Au, reaction rate is controlled by the intermicellar exchange rate whenever concentration ...

متن کامل

Understanding and controlling the structure and segregation behaviour of AuRh nanocatalysts

Heterogeneous catalysis, which is widely used in the chemical industry, makes a great use of supported late-transition-metal nanoparticles, and bimetallic catalysts often show superior catalytic performances as compared to their single metal counterparts. In order to optimize catalyst efficiency and discover new active combinations, an atomic-level understanding and control of the catalyst stru...

متن کامل

An atomistic view of the interfacial structures of AuRh and AuPd nanorods.

In this work we address the challenge of furthering our understanding of the driving forces responsible for the metal-metal interactions in industrially relevant bimetallic nanocatalysts, by taking a comparative approach to the atomic scale characterization of two core-shell nanorod systems (AuPd and AuRh). Using aberration-corrected scanning transmission electron microscopy, we show the existe...

متن کامل

The synthesis of mesoporous silicates containing bimetallic nanoparticles and magnetic properties of PtCo nanoparticles in silica.

Using a one-pot approach employing true liquid crystal templating on neutral surfactants and simple metal salt precursors, mesostructured, mesoporous silicates have been prepared in which bimetallic nanoparticles are deposited; magnetic properties of PtCo systems so prepared are evaluated.

متن کامل

Fischer–Tropsch Synthesis with Cu-Co Nanocatalysts Prepared Using Novel Inorganic Precursor Complex

The structural properties and activities of Cu-Co catalysts used in Fischer-Tropsch synthesis are explored according to their method of preparation. Impregnation, co-precipitation, and a novel method of thermal decomposition were applied to an inorganic precursor complex to generate the Cu-promoted alumina- and silica-supported cobalt catalysts. The precursors and the catalysts obtained by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017